

Determining Total Phenolic Compound, Tannin and Anthocyanin Ratios of Grape Varieties Cultivated in Şanlıurfa Province

Aslı POLAT^{1*}, İsmail RASTGELDİ², Sadettin GÜRSÖZ³

¹Tekirdağ Viticulture Research Institute, Tekirdağ, Turkey

²GAP Agriculture Research Institute, Şanlıurfa, Turkey

³Harran University, Agriculture Faculty, Horticulture Department, Sanliurfa, Turkey

How to cite: Polat, A., Rastgeldi, İ., & Gürsöz, S. (2022). Determining total phenolic compound, tannin and anthocyanin ratios of grape varieties cultivated in Şanlıurfa province. *Viticulture Studies (VIS), 2*(1), 01 – 12. https://doi.org/10.52001/vis.2021.6.01.12

Article History:

Received: 16.06.2021 Accepted: 10.12.2021 First online: 23.12.2021

Corresponding Author asli.polat@tarimorman.gov.tr

Keywords

V. vinifera L. Local grape varieties Berry components Secondary metabolites

Introduction

The role of grape in nutrition has been known since ancient times and it still preserves this feature today. Factors such as variety, ecological conditions and cultivation techniques are effective on the composition of the grape (Yavaş and Fidan, 1986).

Determining the chemical composition of grape and grape products, which have important roles in human nutrition and health, is considered to play an important role in the formation of a more conscious consumption habit, as it enables a selection according to the purpose and need. In addition, it is particularly important in terms of revealing the values of table grapes, dried and wine grapes of local varieties (Aras, 2006).

Currently, phenolic compounds, which are the subject of studies in many fields such as agriculture, food, biology, chemistry and pharmacology are synthesized not only during the normal development of plants; but also, in

Abstract

This study was conducted to determine the total phenolic compound, tannin, and anthocyanin ratios in 29 grape varieties cultivated in Şanlıurfa Province in 2013 and 2014. The skin, fruit flesh and seeds of grape varieties were analyzed separately by using spectrophotometric methods. As a result, in this study conducted; It has been determined that grape varieties are rich in phenolic compounds and their content differs from each other. Comparison of the white and colored varieties showed that total phenolic compound and anthocyanin contents of colored varieties were higher in skin, flesh and seed. Besides, this study determined that total tannin content of colored varieties was higher in skin and flesh, while it was at the same level in seeds of both colored and white varieties. Moreover, the study revealed that different climatic structures have an effect on the accumulation of phenolic compounds in the berry over the years.

cases such as being infected, injured and exposed to UV light (Naczk and Shahidi, 2004).

They are considered as secondary plant metabolites, knowing that they are formed as side compounds during aromatic amino acid metabolism (Van Buren, 1970; Acar, 1998; Naczk and Shahidi, 2004). Secondary plant metabolites are compounds that are not vital for the whole or certain parts of the plant. These compounds are classified into a group of characteristic features that include biosynthetic precursors (phosphoenolpyruvate, pyruvate, acetate and some amino acids, acetyl CoA and malonyl CoA), including structural diversity and synthesis. (Robards et al., 1999).

Grape is a plant species rich in phenols and phenols are mainly found in the skin, stem, leaves and seeds of the grape (Pastrana-Bonilla et al., 2003; Makris et al., 2008). The phenolic content of grapes differs depending on the variety, soil structure, climate, growing conditions and if it is contaminated by fungal diseases (Bruno and Sparapano, 2007). The most widely studied metabolites in viticulture are phenolic compounds. It has been reported that these substances are found in different forms and in different amounts in all organs of the vine such as roots, branches, shoots, leaves, bunches and berries (Sivritepe, 2001).

The most important group of phenolic compounds found in grapes are anthocyanins which are responsible for the color (Cemeroglu et al., 2001). Anthocyanins are natural color pigments that give their distinctive red, blue and purple hues (Costa et al., 2000; Ho et al., 2001; Camire et al., 2002).

The anthocyanin content of grapes is an important quality criterion for winemaking. Tannins, another group of phenolic compounds, are responsible for the formation of taste in grapes and are predominantly found in the pedicel, skin and seeds. In general, the amount of tannins in the berry reaches the highest level just before the veraison phase, and decreases towards maturity (Harborne and Grayer 1993).

Previous findings obtained by authors have revealed that some of the varieties identified in the region by the study of Gürsöz (1993) could not survive until today, while some of them were in danger of extinction. It is necessary to take some precautions and perform certain studies to bring these varieties back to production. Determining the characteristic features of the varieties known only in the region is the main work to start with.

Material and Methods

This study was conducted by observing and taking samples from the 29 grape varieties determined in different districts and parcels in Sanliurfa province in 2013 and 2014. The grape variety from each district is as follows: from Akçakale district; Tahannebi, Perlette, Yediveren (table grapes) Öküzgözü, Syrah, Chardonnay, Cabernet Sauvignon (wine grapes), from Bozova district; Hatun Parmağı, Şeffafi (table grapes), Tilgören, Azezi (must and wine grapes), from Hilvan District; Horoz Karası, Kabarcık, Top Üzüm, Hönüsü, Su Üzümü, Serpenekıran (table grapes), from Karaköprü District; Küllahi, Zeyni, Çiloreş, Kara Kabarcık (table grape), Çilorut (must and table grape), Sergi Karası (Dried), from Siverek District; Simore, Elma Üzümü, Kızıl Banki,

Şire, Hasani, Ağ Banki (Table grapes). The soils are generally basic in character, rich in lime and poor in organic matter.

For phenolic compound, tannin and anthocyanin analysis, the skin, flesh and seed parts of the berries were separated and analyzed separately. Analyzes were performed as 3 replications.

Determination of Total Phenolic Compounds and Tannin

Extraction: 5 g of skin, flesh or seed samples were weighed and cut into small pieces by using a scalpel. Later, 50% ethanol was added to the samples and they were thoroughly crushed in the homogenizer. Then, they were filtered through whatmann paper and the 50 % ethanol was added to a final volume of 25 mL. They were kept in 4 °C until the anlysis is done (Yu and Meredith, 1986; Tangolar et al., 1999).

Determination of total phenolic compound: Analysis of total phenolic compounds was determined using Folin-Ciocalteu colorimetric method defined by Singleton and Rossi (1965), and the results were noted in gallic acid (mg kg⁻¹).

Determination of total tannins: The prepared extractions were analyzed according to AOAC, (1998).

Determination of Total Anthocyanin Content

Extraction: After separating the skin, fruit flesh and seeds of 10 randomly selected grape berries and recording their weight, they were kept separately at 30 °C in 40 mL solution with a pH of 3.2 for 72 hours. Then they were stored at -20 °C until analysis (Di Stefano and Cravero, 1991).

Determination of Total Anthocyanin: The samples were analyzed on the spectrophotometer after diluting them in 1/10 H_2O hydrochloric ethanol [EtOH (95%): (deionized distilled water): HCl (70: 30: 1 v/v/v)]. The total anthocyanin amounts were determined according to Di Stefano and Cravero, (1991) by calculating the absorbance values obtained expressed in equivalents of malvidin 3-glikozide compound (mg kg⁻¹).

Hach lange DR 5000 UV-VIS model spectrophotometer was used for analyzes.

Statistical Analysis

After all the data obtained were divided into two as colored and white grapes, they were evaluated statistically according to the randomized blocks trial design. The results were evaluated by analysis of variance, and the differences between years and varieties were revealed by Duncan multiple comparison test. For this purpose, "SPSS 16" software was used.

Results and Discussion

Maturity criteria of grape varieties harvested in 2013 and 2014 are given in Table 1.

Total Phenolic Compound Content

It was found that total phenol content in

Table 1. Maturity criteria of grape varieties harvested

the skin of the white grape varieties as the average of both years was 167 mg kg⁻¹ in the Kabarcık and it was the lowest value, in Chardonnay it was 504 mg kg⁻¹ as the highest value. Total phenolic content of fruit flesh was found as 51 mg kg⁻¹ in Ağ Banki is the lowest and 178 mg kg⁻¹ in Tahannebi as the highest. Besides that, it was determined that the lowest total phenol content in the seed was 364 mg kg⁻¹ in the Ağ Banki and the highest was 731 mg kg⁻¹ in the Cilores (Table 2). Among the colored varieties as the average of the years, total phenol content in the skin of the fruit was found to be lowest in Kızıl Banki with the value of 366 mg kg⁻¹ and it was determined as the highest with the value of 511 mg kg⁻¹ in Kara Kabarcık. Fruit flesh was found to have the lowest total phenol content and it was 61 mg kg⁻¹ in Yediveren, while by 172 mg kg⁻¹ it was the highest in Horoz Karası.

Varieties	Harve	est date	Briz	c (%)	рН		Acidity (%)		Maturity Index	
	2013	2014	2013	2014	2013	2014	2013	2014	2013	2014
Ağ Banki	Sep, 5	Sep, 11	23.30	19.50	3.99	3.73	0.448	0.408	52.10	47.80
Azezi	Sep, 9	Sep, 4	18.60	18.50	3.72	3.99	0.296	0.327	63.00	56.40
Chardonnay	Aug, 27	Agu, 11	20.70	21.20	3.74	3.60	0.621	0.572	33.30	37.20
Çiloreş	Sep, 1	Agu, 29	21.20	19.00	3.74	3.82	0.330	0.369	64.20	51.60
Çilorut	Aug, 21	Agu, 20	17.00	18.20	3.80	3.86	0.430	0.464	39.50	39.10
Elma Üzümü	Sep, 5	Agu, 26	14.60	20.00	3.49	3.76	0.503	0.532	29.00	37.50
Hasani	Aug, 26	Sep, 11	16.50	18.10	3.52	3.78	0.610	0.492	27.10	36.80
Hatun Parmağı	Aug, 12	Agu, 7	17.30	17.00	3.98	3.39	0.475	0.423	36.40	40.20
Kabarcık	Aug, 15	Agu, 18	16.10	17.70	3.83	3.85	0.473	0.421	34.10	42.00
Küllahi	Aug, 12	Agu, 12	15.50	18.30	3.83	3.84	0.480	0.277	32.20	66.20
Perlette	July, 29	July, 24	20.30	19.10	3.68	3.59	0.505	0.669	40.20	28.50
Serpenekıran	Sep, 9	Sep, 8	19.30	18.50	3.76	3.77	0.399	0.367	48.40	50.40
Simore	Aug, 26	Agu, 26	19.90	19.80	3.32	3.56	0.767	0.582	26.00	34.00
Su Üzümü	Sep, 9	Sep, 3	20.70	17.30	3.94	4.01	0.492	0.347	42.00	49.80
Şeffafi	Aug, 12	Agu, 7	19.40	19.70	3.84	3.27	0.367	0.449	52.90	43.80
Şire	Sep, 12	Sep, 11	19.20	18.20	3.39	3.65	0.416	0.478	46.30	38.00
Tahannebi	July, 15	July, 22	17.50	23.00	4.00	4.21	0.389	0.451	45.00	50.90
Zeyni	Aug, 12	Agu, 7	15.90	20.10	3.88	3.85	0.448	0.462	35.40	43.60
Cabernet Sauvignon	Aug, 27	Agu, 25	20.80	20.10	3.82	3.71	0.588	0.643	35.40	31.30
Horoz Karası	Aug, 15	Agu, 18	18.10	19.50	3.95	3.97	0.482	0.536	37.60	36.40
Hönüsü	Sep, 9	Agu, 29	18.10	19.40	3.41	3.63	0.406	0.534	44.70	36.30
Kara Kabarcık	Aug, 26	Sep, 3	13.30	17.20	3.87	4.34	0.381	0.267	34.90	64.50
Kızıl Banki	Sep, 5	Sep, 3	16.20	16.70	3.88	4.28	0.277	0.361	58.60	46.30
Öküzgözü	Aug, 17	Agu, 11	19.40	17.20	4.13	3.82	0.350	0.562	55.50	30.70
Sergi Karası	Aug, 21	Agu, 20	24.10	24.20	3.98	3.86	0.506	0.471	47.70	51.30
Şiraz	Aug, 27	Agu, 25	24.70	24.10	3.96	4.05	0.472	0.578	52.20	41.70
Tilgören	Aug, 12	Agu, 18	14.40	18.70	3.65	3.89	0.577	0.417	25.00	44.80
Top Üzüm	Sep, 9	Agu, 29	16.20	18.70	3.83	3.30	0.485	0.461	33.40	40.60
Yediveren	Aug, 17	Agu, 21	17.70	20.20	4.13	4.23	0.434	0.350	40.80	57.70

Hönüsü was determined to have the lowest total phenol content of the seed with 513 mg kg⁻¹ and the highest value was found to be 1183 mg kg⁻¹ in the Shiraz (Table 3).

The amount of total phenolics in grapes varies according to the year and variety and

decreases during the ripening period (Doshi et al., 2006; Jin et al., 2009). Similarly, in a similar study carried out under the conditions of Tekirdağ Province in 2007 and 2008, it has been reported that the total amount of phenolic compounds in grapes varies according to the

Table 2. Total phenolic compound	d contents of white grapes
----------------------------------	----------------------------

Varieties	Total Phenolic Compound (mg kg ⁻¹) 2013 2014								
	Skin	Flesh	Seed	Skin	Flesh	Seed			
Ağ Banki	410±1.14f	47±1.07 j	365±4.031	432±0.64d	56±1.52i	363±1.87g			
Azezi	265±2.12j	164±2.00b	643±4.08b	176±1.60j	126±1.72c	570±4.20ef			
Chardonnay	487±2.31a	38±0.59k	580±5.11ef	370±3.73e	74±0.51h	684±3.40b			
Çiloreş	375±2.55h	35±1.32k	675±6.12a	437±3.07cd	73±0.79h	787±4.45a			
Çilorut	112±0.83no	47±1.10j	535±4.91h	368±3.20ef	95±0.72ef	560±5.10efg			
Elma Üzümü	136±2.47m	71±1.24h	628±5.09c	227±2.49i	73±0.40h	592±2.73de			
Hasani	262±0.40j	54±1.62i	514±3.45i	361±3.26f	55±0.85i	564±0.52efc			
Hatun Parmağı	254±1.78k	54±1.35i	567±4.97fg	375±1.83e	93±1.08ef	- 551±2.44fg			
Kabarcık	108±0.040	96±1.20g	501±4.81i	225±2.08i	99±1.35e	582±0.49e			
Küllahi	116±2.57n	118±1.98e	485±3.87j	287±2.98h	101±1.27e	558±2.58efc			
Perlette	418±1.32e	123±2.51e	Seedless	469±1.68b	147±2.68b	Seedless			
	132±0.54m	129±2.910	587±5.08de	232±2.05i	115±1.27d	634±1.93d			
Serpenekıran	445± 2.36d	129±3.400	571±1.40efg	252±2.051 361±2.54f	105±1.270	591±2.79de			
Simore Su Üzümü	445± 2.500 384±5.03g	105±1.301	584±7.79de	340±1.06g	103±1.38e 108±0.77e	667±3.52c			
	234±1.14			281±2.50h					
Şeffafi		107±1.49f	455±3.10k		85±1.59g	659±2.14cd			
Şire	453±0.92c	146±0.61c	598±5.49d	556±6.58a	130±6.27c	583±2.83e			
Tahannebi	465±1.68b	186±2.87a	582±9.36ef	444±2.36c	170±1.54a	660±4.95cd			
Zeyni	296±2.42i	34±2.58k	559±2.50g	344±1.01g	88±1.26g	580±1.76e			
Mean	297.00	92.00	555.00	349.00	100.00	599.00			
F _{0.05}	4040.72	639.69	862.62	1284.49	128.47	4800.83			
		Ν	lain Effects						
Varieties	Ski	in	Flesh		See	d			
Ağ Banki	421±0).70e	51±0.86g	9	364±1	.40h			
Azezi	220±		145±1.06b		607±3.33c				
Chardonnay	429±0		56±0.40g		632±0.98b				
Çiloreş	406±		54±0.63g		731±5.20a				
Çilorut	240±		71±0.89ef		548±4.84ef				
Elma Üzümü	182±´ 312±		72±0.81ef		610±3.90c				
Hasani Hatun Parmağı	312±		55±0.97g 74±0.47ef		539±1.93f				
Hatun Parmağı Kabarcık	167±		74±0.47et 98±0.24def		559±3.68e 542±2.50f				
Küllahi	201±2		98±0.24def 110±0.86d		522±2				
Perlette	444±(135±2.46			less			
Serpenekiran	182±0		122±2.100		610±2				
Simore	403±	1.97f	105±0.29	105±0.29d		.02d			
Su Üzümü	362±2	362±2.43g		106±0.64d		45bc			
Şeffafi	258±	258±0.80j		96±0.10def).95e			
Şire	504±3		138±3.01bc		590±2.				
Tahannebi	454±´		178±1.63a		621±7.				
Zeyni	320±0		61±0.79f	g	570±1.				
Mean	323		96.00		577.				
F _{0.05}	4537 different letters in t		424.13		2464				

Values marked with different letters in the same column were statistically significant at p<0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

	Total Phenolic Compound (mg kg ⁻¹)							
Varieties		2013			2014			
	Skin	Flesh	Seed	Skin	Flesh	Seed		
Cabernet Sauvignon	375±3.55f	154±2.72c	594±6.07c	466±2.61e	127±1.46d	569±1.87e		
Horoz Karası	465±1.45b	174±1.20a	717±3.19b	544±1.32b	170±0.30a	817±4.84b		
Hönüsü	423±2.56d	78±0.85i	492±1.50g	448±2.17g	122±1.52d	535±2.04f		
Kara Kabarcık	476±3.42a	123±3.11f	561±2.90e	545±1.76b	112±1.60e	585±2.92d		
Kızıl Banki	362±1.01g	137±3.10e	537±5.04f	371±2.05i	140±1.37c	583±0.83d		
Öküzgözü	426±1.26d	167±1.89b	462±3.39h	564±0.80a	153±1.54b	582±1.70d		
Sergi Karası	403±3.61e	152±0.80d	574±6.43de	545±2.88b	144±3.73bc	574±2.66de		
Syrah	464±2.89b	76±1.75i	1247±6.70a	534±1.89c	101±2.26f	1119±1.84a		
Tilgören	435±2.81c	95±2.47h	574±3.24de	494±3.84d	105±0.83ef	575±2.67de		
Top Üzüm	364±1.52g	103±2.02g	578±9.72d	417±1.58h	123±1.52d	608±0.91c		
Yediveren	367±0.82fg	59±0.82j	544±1.13f	457±4.72f	63±2.25g	586±2.31d		
Mean	415.00	120.00	625.00	490.00	124.00	648.00		
F _{0.05}	290.19	357.29	1632.16	573.94	160.22	6729.00		

Table 3. I otal	phenolic compound	d contents of colored grap	ces

	Main Effects							
Varieties	Skin	Flesh	Seed					
Cabernet Sauvignon	421±1.64g	140±0.63c	582±3.39c					
Horoz Karası	505±0.88b	172±0.74a	767±3.02b					
Hönüsü	436±1.59f	100±0.90e	513±0.30g					
Kara Kabarcık	511±1.30a	118±1.78d	573±0.03d					
Kızıl Banki	366±0.63j	139±2.22c	560±2.23e					
Öküzgözü	495±1.03c	160±0.29b	522±1.51f					
Sergi Karası	474±3.07d	148±1.90c	574±3.55d					
Syrah	499±0.87c	88±1.80f	1183±2.62a					
Tilgören	464±1.76e	100±1.49e	575±2.44d					
Top Üzüm	390±0.11i	113±1.39de	593±4.63c					
Yediveren	412±2.06h	61±0.83g	565±1.19e					
Mean	452.00	122.00	637.00					
F _{0.05}	950.40	386.86	5870.76					

Values marked with different letters in the same column were statistically significant at p<0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

year and variety (Yayla, 2008). The amount of phenolic compounds in colored varieties is higher than in white varieties. The reason for this is that anthocyanins increase the total amount of phenolic compounds (Kaur and Kapoor 2001). Dávalos et al. (2005) have reported that the total amount of phenolic compounds was higher in red grape juice than in other samples based on the results of their study conducted in red and white grape juices and vinegar.

Grape varieties differ in terms of the amount of phenolic compounds. These differences are due to the differences such as water content, size, skin thickness, number of seeds and size of the seed. In this study, the differences observed between years are determined to be due to the differences in climate difference between the years.

Total Anthocyanin Contents

When we examined the average of both years of white grape varieties, we determined that the total anthocyanin content of the skin was 0.322 mg kg⁻¹ in the Azezi being the lowest and 1.981 mg kg⁻¹ in the Tahannebi being the highest. We determined that the total anthocyanin content of the fruit flesh was 0.099 mg kg⁻¹ in the Kabarcık as the lowest value, and 0.528 mg kg⁻¹ in the Chardonnay as the highest value. Besides, Cilorut was determined to have the lowest total anthocyanin content in the seed with the value of 2.48 mg kg⁻¹ and Serpenekıran was found to have the highest content with the value of 7.23 mg kg⁻¹ (Table 4). While the average yearly average of the colored grape varieties was the Kızıl Banki with the lowest 59 mg kg⁻¹ in terms of total anthocyanin

	Total Anthocyanin (mg kg ⁻¹)							
Varieties		2013			2014			
	Skin	Flesh	Seed	Skin	Flesh	Seed		
Ağ Banki	0.728±0.01e	0.252±0.01gh	4.62±0.26de	0.721±0.02fgh	0.246±0.03c	4.24±0.12d		
Azezi	0.266±0.02k	0.356±2.00def	3.59±0.06f	0.378±0.09j	0.328±0.01c	3.76±0.19de		
Chardonnay	0.560±0.03ghi	0.507±0.59a	4.53±0.10e	0.513±0.19hi	0.550±0.01a	4.39±0.09cd		
Çiloreş	0.383±0.05j	0.179±1.32ij	4.52±0.10e	0.447±0.02i	0.196±0.01d	4.34±0.19cd		
Çilorut	0.676±0.03f	0.278±1.10fg	2.63±0.03h	0.731±0.06fgh	0.266±0.01c	2.33±0.14f		
Elma Üzümü	1.036±0.03b	0.479±1.24b	4.94±0.06d	0.857±0.02ef	0.482±0.0b	4.77±0.05c		
Hasani	0.983±0.09c	0.302±1.62f	3.35±0.07f	0.854±0.13ef	0.293±0.01c	3.20±0.07e		
Hatun Parmağı	0.453±0.03i	0.160±1.35j	6.12±0.11b	0.545±0.08h	0.140±0.01d	5.51±0.06b		
Kabarcık	1.950±0a	0.102±1.201	3.43±0.10f	1.941±0.13ab	0.097±0.28e	3.90±0.17de		
Küllahi	0.495±0.28i	0.118±1.98k	3.08±0.10g	0.533±0.06h	0.130±0.01de	3.28±0.32e		
Perlette	0.982±0.09c	0.301±2.51f	Seedless	0.846±0.09ef	0.294±0.02c	Seedless		
Serpenekıran	1.015±0.18bc	0.442±3.40cd	7.17±0.07a	1.062±0bc	0.453±0.01b	7.29±0.16a		
Simore	0.943±0.19d	0.458±1.30bc	3.25±0.13f	0.815±0.04efg	0.471± 0.01b	3.04±0.14e		
Su Üzümü	1.030±0.12b	0.437±1.49cde	7.15±0.10a	1.045±0.03cd	0.427±0.02bc	6.84±0.17ab		
Şeffafi	0.608±0.08g	0.241±1.49gh	4.93±0.06d	0.632±0.33gh	0.252±0.0c	4.88±0.12c		
Şire	0.964±0.19cd	0.500±0.61a	7.05±0.07a	0.970±0.03de	0.517±0.02ab	7.17±0.33a		
Tahannebi	1.943±0.13a	0.457±2.87bc	5.44±0.19c	2.020±0.21a	0.448±0.01b	5.46±0.24b		
Zeyni	0.520±0.05hi	0.189±2.58i	4.53±0.10e	0.499±0.02i	0.194±0.03d	4.62±0.05c		
Mean	0.86	0.32	4.73	0.85	0.32	4.65		
F _{0.05}	35.05	8.96	271.61	35.37	3.91	199.58		
			Main Effects					
Varieties		Skin		Flesh	Se	ed		
Ağ Banki	0.7	25±0.01fg	0.249±0.02ef		4.43±0.07bc			
Azezi		322±0.05k	0.342±0.02d		3.67±0.12bcd			
Chardonnay	0.5	537±0.09h	0.528±0.01a		4.46±0.06bc			
Çiloreş	0.4	415±0.04j	0.188±0.01fg		4.43±0.14bc			
Çilorut		03±0.02fg	0.2	0.272±0.06e		:0.06e		
Elma Üzümü		46±0.01de	0.481±0.02b		4.86±0.04b			
Hasani		18±0.07ef		0.298±0.01e		0.04cde		
Hatun Parmağı		499±0.05i	0.150±0.02fg		5.81±0.09ab 3.66±0.04bcd			
Kabarcık		945±0.06b		0.099±0.13h).04bcd).20cde		
Küllahi Perlette		0.514±0.13hi 0.914±0.04ef		0.124±0.0gh		dless		
Serpenekiran	1.038±0.09c			0.297±0.02e 0.448±0.0c		:0.11a		
Simore	0.879±0.10efg			65±0.02bc).11cde		
Su Üzümü	1.038±0.06c			0.432±0.03c		:0.13a		
Şeffafi		0.620±0.15g		0.246±0.02ef		0.08b		
Şire	0.96	67±0.11cde	0.5	08±0.03ab	7.11±	0.18a		
Tahannebi	1.9	981±0.11a	0.4	53±0.04bc	5.45±	0.07ab		
Zeyni	0.5	10±0.03hi	0.1	92±0.01fg	4.58±	0.03bc		
Mean		0.86		0.32		69		
F _{0.05}		47.99		3.56	369	9.84		

Table 4. Total anthocyanin contents of white grapes

Values marked with different letters in the same column were statistically significant at p < 0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

content in skin, it was observed that the Kara Kabarcık had the highest value with 1370 mg kg⁻¹. On the other hand, the total anthocyanin content of the fruit flesh was found to be 0.354 mg kg⁻¹ in the Kızıl Banki as the lowest, and the highest was 5.67 mg kg⁻¹ in the Top Üzüm. The total anthocyanin content of the seeds in colored grape varieties ranged from 3.08 to 9.05 mg kg⁻¹, and the lowest value was determined in Sergi Karası, whilst the highest value was determined in Öküzgözü (Table 5).

The most important group of phenolic compounds found in grapes are anthocyanins which are responsible for color (Cemeroglu et al., 2001). Anthocyanins are natural color pigments that give their distinctive red, blue and purple hues (Costa et al., 2000; Camire et al., 2002). Anthocyanins are a very large and important subgroup of phenolic substances and they start to form in the veraison phase in grapes, accumulate during ripening phase and reach the highest level after maturity (Kunter et al., 2013).

Cangi et al. (2011) reported that the amount of anthocyanin in grapes increased in parallel with the color change. Also, Fernandez - Lopez et al. (1992) demonstrated that the anthocyanin content in grapes was 310 mg kg⁻¹ at the beginning of maturity and it was 1140 mg kg⁻¹ during the maturity period. Similarly, Revilla et al. (2001) showed in their study that the total amount of anthocyanin varied between 273-804 mg kg⁻¹ in Cabernet Sauvignon grapes and 218-693 mg kg⁻¹ in Tempranillo grapes during maturity and increased with maturity.

Previous studies have shown that the ecological conditions have also great impact on the anthocyanin content of grapes. Toprak, (2011) compared the anthocyanin content of the Kalecik Karasi cultured in four different ecology (Ankara - Kalecik, Ankara - Keçiören, Ankara -

	Total Anthocyanin (mg kg ⁻¹)							
Varieties		2013			2014			
	Skin	Flesh	Seed	Skin	Flesh	Seed		
Cabernet Sauvignon	658±5.14d	1.438±0.08cd	5.23±0.21c	628±3.31c	1.463±0.05de	5.54±0.10d		
Horoz Karası	465±1.32g	0.942±0.08e	8.33±0.12ab	421±2.98f	1.585±0.04d	8.22±0.52ab		
Hönüsü	96±0.94i	1.822±0.07c	8.37±0.07ab	132±2.17h	2.148±0.05cd	8.44±0.04a		
Kara Kabarcık	1381±1.21a	5.271±0.10a	5.11±0.19cd	1360±7.68a	5.719±0.10ab	5.27±0.59d		
Kızıl Banki	49±1.83j	0.192±0.02f	7.24±0.16b	70±5.18i	0.516±0.03e	7.02±0.24b		
Öküzgözü	689±4.33c	2.466±0.07b	9.22±0.03a	660±4.46bc	2.176±0.03cd	8.88±0.20a		
Sergi Karası	479±4.27f	2.896±0.07b	3.14±4.24e	437±1.93ef	3.306±0.20c	3.02±0.27f		
Syrah	727±5.59b	1.156±0.20de	4.19±0.09de	731±2.52b	1.298±0.03de	4.12±0.07e		
Tilgören	535±1.53e	1.064±0.06de	5.51±0.07c	482±0.92d	1.686±0.07d	5.25±0.09d		
Top Üzüm	331±2.75h	5.302±0.39a	4.95±0.06cd	368±1.76g	6.037±0.20a	4.70±0.05de		
Yediveren	476±7.22fg	0.930±0.08e	5.70±0.12c	468±1.18de	0.876±0.0e	6.07±0.32 c		
Mean	535	2.13	6.09	523	2.44	6.05		
F _{0.05}	7830.59	159.22	198.16	9050.00	261.00	94.52		
			Main Effects					
Varieties		Skin		Flesh		Seed		
Cabernet Sauvignon		643±3.73c		1.451±0.04e	Ē	5.39±0.10de		
Horoz Karası		443±0.85f		1.263±0.02f	8.28±0.25b			
Hönüsü		114±1.42h		1.985±0.01d	8.41±0.03b			
Kara Kabarcık		1370±3.70a		5.495±0.06a	5.19±0.37e			
Kızıl Banki		59±3.45i		0.354±0.01i	7.13±0.09c			
Öküzgözü		674±4.39bc		2.321±0.06c	9.05±0.08a			
Sergi Karası		458±2.98ef		3.101±0.10b		3.08±0.21g		
Syrah		729±3.36b		1.227±0.09g		4.16±0.05f		
Tilgören	509±0.68d		1.375±0.06ef	1.375±0.06ef 5.38±0.07c				
Top Üzüm	350±2.15g		5.67±0.24a		4.83±0.05f			
Yediveren		472±3.06e		0.903±0.04h		5.89±0.17d		
Mean		529.00		2.29		6.07		
F _{0.05}		12365.19		340.38		175.31		

Values marked with different letters in the same column were statistically significant at p < 0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

Table 5. Total anthocyanin contents of colored grapes

Polatlı and Nevşehir – Çat) and he reported that for Kalecik the total anthocyanin content was 202 mg kg⁻¹, for Keçiören 196 mg kg⁻¹, for Polatlı 319 mg kg⁻¹ and for Çat 299 mg kg⁻¹.

Total Tannin Contents

The average total tannin content of the skin of the white grape varieties varies between 197 mg kg⁻¹ and 740 mg kg⁻¹, while the total

	Total Tannin (mg kg ⁻¹)							
Varieties		2013		2014				
	Skin	Flesh	Seed	Skin	Flesh	Seed		
Ağ Banki	427±7.71g	131±2.53b	1458±5.93j	384±1.78e	120±2.31c	1309±27.45g		
Azezi	237±5.79ij	114±1.27d	1612±6.07ef	211±7.88g	100±1.96f	1569±7.49e		
Chardonnay	501±2.59de	109±1.12de	1558±1.40hi	484±17.73d	122±0.72bc	1561±6.15e		
Çiloreş	750±3.08a	100±4.85e	1630±9.33def	729±32.42a	104±2.09e	1592±7.41cd		
Çilorut	579±12.92c	40±1.64j	1614±15.99def	593±16.99b	50±0.49j	1580±9.40d		
Elma Üzümü	317±2.67h	100±1.59f	1599±3.33fgh	260±1.49f	94±1.20gh	1623±2.50 bc		
Hasani	486±4.92e	77±0.48h	1636±6.19def	460±12.99d	75±1.65i	1590±2.23cd		
Hatun Parmağı	581±2.21c	60±1.90i	1888±42.83a	532±14.00c	48±1.20j	1888±30.63a		
Kabarcık	245±3.60i	161±2.04a	1658±4.13cd	261±14.07f	182±3.32a	1602±1.92c		
Küllahi	502±4.63de	59±2.35i	1594±6.91fgh	478±13.46d	46±1.15j	1574±15.17de		
Perlette	605±4.08b	91±2.56fg	Seedless	547±1.48bc	109±1.31de	Seedless		
Serpenekıran	319±4.36h	92±1.25fg	1645±4.54de	280±17.88f	97±0.40fg	1604±7.25c		
Simore	617±4.45b	110±3.29e	1576±10.53gh	560±17.40bc	90±1.33h	1587±10.11cd		
Su Üzümü	518±10.71d	116±2.55d	1594±6.51fgh	468±13.11d	126±0.91b	1577±12.0d		
Şeffafi	509±8.40d	81±3.18h	1591±11.74fg	439±8.44d	92±1.91h	1561±3.05e		
Şire	221±2.47j	130±2.91c	1700±15.00b	174±10.76g	110±1.71de	1637±38.39b		
Tahannebi	509±1.58d	107±0.69e	1683±14.47bc	459±28.47d	111±0.73d	1586±2.43cd		
Zeyni	461±1.91f	90±1.04g	1529±5.61i	437±6.23d	91±1.66h	1448±18.74f		
Mean	466.00	98.00	1621.00	431.00	98.00	1581.00		
F _{0.05}	634.76	156.39	925.62	86.33	404.29	611.24		

Table 6. Total tannin contents of white grapes

Main Effects

Varieties	Skin	Flesh	Seed
Ağ Banki	405±3.06f	126±2.36b	1384±10.86k
Azezi	224±2.37i	107±1.61e	1591±4.92fgh
Chardonnay	493±8.47d	116±0.82d	1560±2.95i
Çiloreş	740±15.75a	102±2.11e	1611±8.20defg
Çilorut	586±7.76b	45±0.59k	1597±4.31efg
Elma Üzümü	289±1.38g	97±1.39g	1611±2.50defg
Hasani	473±4.23d	76±1.04i	1613±4.15def
Hatun Parmağı	556±6.53c	54±0.79j	1888±18.94a
Kabarcık	253±5.61h	172±2.02a	1630±2.86cd
Küllahi	490±8.19d	52±1.47j	1584±10.99fgh
Perlette	576±1.91bc	100±1.87f	Seedless
Serpenekıran	299±10.31g	95±0.59g	1625±4.30cde
Simore	589±9.82b	100±1.12fg	1582±8.09fghi
Su Üzümü	493±3.73d	121±1.69c	1586±9.25fghi
Şeffafi	474±7.58d	86±1.37h	1576±4.81ghi
Şire	197±4.33j	120±2.05cd	1669±17.22b
Tahannebi	484±13.75d	109±0.27e	1635±8.40c
Zeyni	449±4.06e	90±0.34h	1489±8.06j
Mean	448.00	98.00	1602.00
F _{0.05}	349.20	449.28	2215.40

Values marked with different letters in the same column were statistically significant at p<0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

tannin content of the fruit flesh is between 45 mg kg⁻¹ and 172 mg kg⁻¹. On the other hand, the total tannin content of the seed was observed to range between 1384 mg kg⁻¹ and 1888 mg kg⁻¹ (Table 6).

As a result of the statistical analysis performed between the varieties by calculating the average of both years of the colored varieties, we determined that the difference between the varieties is significant. Kızıl Banki had the lowest value of the total tannin content in the skin, while this value in Kara Kabarcık was the highest. Besides, it was determined that the total tannin content of the fruit flesh ranged between 88 and 234 mg kg⁻¹, a"nd the total tannin content of the seed ranged between 1478 and 1659 mg kg⁻¹ (Table 7).

In addition to the differences in tannin content of different varieties, it was observed

that different climatic conditions in different years had also effects on the tannin content of the grapes. In addition, significant differences were observed in terms of the ratio of tannins contained in the skin, fruit flesh and seeds of the grape varieties.

The tannins found in grape skins have a larger structure than the ones in the seed. As the degree of polymerization of tannins increases, their reactivity potential with proteins also enhances. The polymeric tannins in the skin of the grape react with the proteins and make the cell wall tighter and thus the grape gains resistance against external factors. Tannins are mostly located in the inner cells of the skin (Gagne et al., 2006). Souquet et al. (2000) reported that the amount of tannin in the pedicel is between the amount of tannin in the skin and the amount of tannins in the seed, and that the

Table 7. Total tannin contents	s of colored grapes
--------------------------------	---------------------

	Total Tannin (mg kg ⁻¹)							
Varieties		2013		2014				
	Skin	Flesh	Seed	Skin	Flesh	Seed		
Cabernet Sauvignon	895±18.92f	80±2.18g	1591±2.25c	861±23.32g	95±1.06g	1562±4.08de		
Horoz Karası	1098±3.34c	113±6.78e	1589±5.95c	1057±34.73d	95±1.16g	1564±14.69de		
Hönüsü	753±3.87g	156±1.38d	1514±7.83d	699±2.04h	153±1.97e	1442±10.37f		
Kara Kabarcık	1150±8.83b	111±3.68e	1579±3.71c	1279±14.51b	109±2.76f	1579±23.94d		
Kızıl Banki	595±4.55h	99±1.52f	1674±4.33a	594±15.60i	98±0.94g	1644±29.16ab		
Öküzgözü	967±4.77d	259±3.93a	1591±2.89c	1023±60.88e	209±2.34a	1616±23.25b		
Sergi Karası	1247±16.80a	159±1.69d	1595±9.38c	1140±16.82c	163±1.99d	1586±22.36c		
Syrah	1095±6.62c	162±1.22cd	1618±20.67b	998±36.42f	177±1.55c	1571±12.40de		
Tilgören	1069±15.86c	171±3.52c	1592±3.60c	1306±62.73a	150±3.27e	1548±8.57e		
Top Üzüm	1065±11.60c	209±3.02b	1586±6.40c	1128±4.43cd	192±2.30b	1546±11.95e		
Yediveren	928±5.0e	96±1.70f	1601±7.38c	870±24.46g	89±0.36h	1657±12.81a		
Mean	987.00	147.00	1593.00	996.00	139.00	1574.00		
F _{0.05}	290.89	275.00	28.77	42.35	545.15	12.04		
			Main Effects					
Varieties		Skin		Flesh		Seed		
Cabernet Sauvignon		878±21.09e		88±1.59i		1577±2.27de		
Horoz Karası		1077±18.89c		104±2.89g	1577±6.40de			
Hönüsü		726±2.25f		154±1.60e	1478±4.44de			
Kara Kabarcık		1214±3.43a		110±0.75f	1579±10.12de			
Kızıl Banki		595±6.38g		99±0.34h	1659±16.72a			
Öküzgözü		995±28.68d		234±2.97a	1604±12.36c			
Sergi Karası		1194±10.69ab		161±0.75d	1591±9.27cd			
Syrah		1046±15.33cd		169±1.13c		1595±9.55cd		
Tilgören		1188±33.09b		160±3.20d	1570±2.68e			
Top Üzüm		1096±3.85c		201±1.28b	1566±9.17e			
Yediveren		899±12.39e		93±0.84hi	1629±9.57b			
Mean		992.00		143.00	1584.00			
F _{0.05}		126.37		666.99	28.09			

Values marked with different letters in the same column were statistically significant at p<0.05 level according to the Duncan's test. Main effects were grouped as mean of two years, and interactions were grouped within the year to which they belong. All results expressed as mean of repetitions \pm standard error.

grape being red or white does not affect the amount of tannins in the pedicel. Harbertson et al. (2002)singleton stated that the amount of tannin in the seed is approximately three times higher than in the skin. Torchio et al. (2010) found that the amount of tannin in the skin of Barbera grapes with different sugar levels grown in various vineyards was 595 - 1196 mg kg⁻¹, and the amount of tannins in the seed was between 516 - 1092 mg kg⁻¹. Peng et al. (2001) reported that the amount of tannins in the seeds of Syrah grapes varied between 1360 - 2830 mg kg⁻¹ and approximately half of the tannins in wines passed from the seeds.

Conclusion

In conclusion, in this study conducted with 29 different grape varieties, it was determined that grape varieties are rich in phenolic compounds and their content significantly differs from each other. Comparing the white and colored varieties; it has been found that colored varieties had higher amount of total phenolic compound and anthocyanin content in skin, fruit flesh and seeds compared to the white varieties. Also, colored varieties had higher amount of tannin content in skin and fruit flesh than white varieties while it was the same in the seeds.

Acknowledgments

This study was produced from Aslı Polat' s PhD thesis and it was supported by TAGEM (TAGEM/BBAD/14/A08/P04/08).

Conflicts of Interest

There is no conflict of interest between the authors.

Author Contribution

A.P. Performed the experiments, field work, took role in conceptualization, data analysis and writing of the manuscript. İ.R. performed experiments and field work and participated in writing the manuscript. S.G. took role in conceptualization and writing the manuscript. All authors read and approved the final manuscript.

References

- Acar, J. (1998). *Phenolic Compounds and Natural Colors, Food chemistry*, Ed. Saldamlı, F. Hacettepe Univ. Publications, Ankara, p 435-452.
- AOAC, (1998). Official Method of Analysis. 15th Edition, Association of Official Analytical Chemists, Washington DC.
- Aras, Ö. (2006). Determination of Total Carbohydrate, Protein, Mineral Substance and Phenolic Compound Content of Grapes and Grape Products. Süleyman Demirel University, Institute of Natural and Applied Sciences, Master Thesis, Isparta, p 59.
- Bruno, G., & Sparapano, L. (2007). Effects of three esca-associated fungi on Vitis vinifera L: V. Changes in the chemical and biological profile of xylem sap from diseased cv. Sangiovese vines. Physiological and Molecular Plant Pathology, 71, 210–229. <u>http://dx.doi.org/10.1016/j.pmpp.2008.02.005</u>
- Camire, M. E., Chaovanalikit, A., Dougherty, M. P., & Briggs, J. (2002). Blueberry and grape anthocyanins as breakfast cereal colorants. *Journal of Food Science*, 67(1), 438-441. <u>https://doi.org/10.1111/j.1365-</u> <u>2621.2002.tb11425.x</u>
- Cangi, R., Saraçoğlu, O., Uluocak, E., Kiliç, D., & Şen, A. (2011). Chemical changes during ripening in some wine grape varieties cultivated in Kazova (Tokat) Rregion. *Journal of the Institute of Science and Technology*, 1(3), 9-14.
- Cemeroğlu, B., Yemenicioğlu, A., & Özkan, M. (2001). *Meyve ve Sebze İşleme Teknolojisi, Cilt 1, Meyve ve Sebzelerin Bileşimi Soğukta Depolanmaları*. Gıda Teknolojisi Derneği Yayınları, Ankara, 24, p 328.
- Costa, C. T., Horton, D., & Margolis, S. A. (2000). Analysis of anthocyanins in foods by liquid chromatography, liquid chromatography-mass spectromery and capillary electrophoresis. *Journal of Chromatography A*, *881*, 403-410. <u>https://doi.org/10.1016/s0021-9673(00)00328-9</u>
- Dávalos, A., Bartolomé, B., & Cordovés, C.G. (2005). Antioxidant properties of commercial grape juices and vinegars. *Food Chemistry*, *93*(2), 325-330. <u>http://dx.doi.org/10.1016/j.foodchem.2004.09.030</u>

- Di Stefano, R., & Cravero M. C. (1991). Metodi Per lo Studio dei Polifenoli dell'Uva. *Rivista di Viticoltura e di Enologia* 44(2), 37-45.
- Doshi, P., Adsule, P., & Banerjee, K. (2006). Phenolic composition and antioxidant activity in grapevine parts and berries (*Vitis vinifera* L.) cv. Kishmish Chornyi (Sharad Seedless) during maturation. *International Journal of Food Science and Technology*, *41*(1), 1–9. <u>http://dx.doi.org/10.1111/j.1365-2621.2006.01214.x</u>
- Fernández-López, J.A., Hidalgo, V., Almela, L., & Roca, J. M. L. (1992). Quantitatif changes in anthocyanins pigments of Vitis vinifera cv. Monastrell during maturation. Journal of the Science of Food and Agriculture, 58(1), 153-155. <u>http://dx.doi.org/10.1002/jsfa.2740580127</u>
- Gagne, S., Saucier, C. & Geny, L. (2006). Composition and cellular localization of tannins in Cabernet Sauvignon skins during growth. *Journal of Agricultural and Food Chemistry*, *54*(25), 9465-9471. https://doi.org/10.1021/jf061946g
- Gürsöz, S. (1993). GAP Alanına Giren Güneydoğu Anadolu Bölgesi Bağcılığı ve Özellikle Şanlıurfa İlinde Yetiştirilen Üzüm Çeşitlerinin Ampelografik Nitelikleri ile Verim ve Kalite Unsurlarının Belirlenmesi Üzerinde Bir Araştırma. Çukurova University, Institute of Natural and Applied Sciences, Doctorate Thesis, Adana, p 363.
- Harbertson, J. F., Kennedy, J. A., & Adams, D. O. (2002). Tannin in skins and seeds of Cabernet Sauvignon, Syrah, and Pinot Noir berries during ripening. *American Journal of Enology and Viticulture*, 53(1):54-59.
- Harborne, J. B., & Grayer, R. J. (1993). Flavonoids and Insects. In The Flavonoids: Advances in Research Since 1986. J.B. Harborne (Ed.), Chapman & Hall, London, p. 589-618.
- Ho, P., Silvia, M. C., & Hogg, T. A. (2001). Changes in colour and phenolic composition during the early stages of maturation of port in wood, stainless steel and glass. *Journal of the Science of Food and Agriculture*, 81(13), 1269-1280. <u>https://doi.org/10.1002/jsfa.938</u>
- Jin, Z. M., He, J. J., Bi, H. Q., Cui, X.Y., & Duan, C. Q. (2009). Phenolic compound profiles in berrys from nine red wine grape cultivars in Northwest China. *Molecules*, 14(12), 4922-4935. https://dx.doi.org/10.3390%2Fmolecules14124922
- Kaur, C. & Kapoor, H. C. (2001). Antioxidants in fruits andv the millennium's health. *International Journal of Food Science+Technology*, 36(7), 703-725. <u>https://doi.org/10.1111/j.1365-2621.2001.00513.x</u>
- Kunter, B., Cantürk, S., & Keskin, N. (2013). Histochemical Structure of Grape Berry. Journal of the Institute of Science and Technology 3(2), 17-24.
- Makris, D. P., Boskou, G., Andrikopoulos, N. K., & Kefalas, P. (2008). Characterisation of certain major polyphenolic antioxidants in grape (*Vitis vinifera* cv. Roditis) stems by liquid chromatography-mass spectrometry. *European Food Research and Technology*, 226(5), 1075–1079. <u>https://doi.org/s00217-007-0633-9</u>
- Naczk, M., & Shahidi, F. (2004). Extraction and analysis of phenolics in food. *Journal of chromatography A*, 1054(1-2), 95-111. <u>https://doi.org/10.1016/s0021-9673(04)01409-8</u>
- Pastrana-Bonilla, E., Akoh, C. C., Sellappan, S., & Krewer, G. (2003). Phenolic content and antioxidant capacity of Muscadine grapes. *Journal of Agricultural and Food Chemistry*, 51(18), 5497–4503. <u>https://doi.org/10.1021/jf030113c</u>
- Peng, Z., Hayasaka, Y., Iland, P. G., Sefton, M., Hoj, P., & Waters, E. J. (2001). Quantitative analysis of polymeric procyanidins (tannins) from grape (*Vitis vinifera*) seeds by reverse phase high-performance liquid chromatography. *Journal of Agricultural and Food Chemistry*, 49(1), 26-31. <u>https://doi.org/10.1021/if0006700</u>
- Revilla, I., Luisa, M., & González-Sanjozé, L. (2001). Evolution during the storage of red wines treated with pectolytic enzymes: New anthocyanin pigment formation. *Journal of Wine Research*, 12(3), 183-197. <u>https://doi.org/10.1080/09571260120106820</u>
- Robards, K., Prenzler, P.D., Tucker, G., Swatsiteng, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. *Food Chemistry*, 66(4), 401-436. <u>https://doi.org/10.1016/S0308-8146(99)00093-X</u>
- Singleton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphomolibdic phosphothungstic acid. *American Journal of Enology and Viticulture, 16*(3), 144-158.
- Sivritepe, N. (2001). Oxidative stress in nature: antioxidants in grapevine, grape and wine (in Turkish with English abstract). *Journal of Aegean Agriculture Research Institute*, *11*(2), 108-135.
- Souquet, J. M., Labarbe, B., Le Guerneve, C., Cheyneir, V., & Moutounet, M. (2000). Phenolics composition of grape stems. *Journal of Agricultural and Food Chemistry*, 48(4), 1076–1080. <u>https://doi.org/10.1021/jf991171u</u>
- Tangolar, S., Büyüktaş, N., Gök, S., & Ergenoğlu, F. (1999). Distribution of Phenolic Compounds in Vine Shoot Tips During Vegetation Period and Its Effect on Shoot Tip Culture (in Turkish with English abstract). III. National Horticultural Congress, Ankara, Turkey, 14 - 17 September, 383-388 p.

- Toprak, F. E. (2011). Studies on the Phytochemical Properties of Kalecik Karası Grape Varieties Cultivated in Ankara and Nevşehir Provinces. Ankara University, Institute of Natural and Applied Sciences, Master Thesis, Ankara. 64 p.
- Torchio, F., Cagnasso, E., Gerbi, V., & Rolle, L. (2010). Mechanical properties, phenolic composition and extractability indices of Barbera grapes of different soluble solids contents from several growing areas. *Analytica Chimica Acta*, 660(1-2), 183–189. <u>https://doi.org/10.1016/j.aca.2009.10.017</u>
- Van Buren, J. (1970). *Fruit Phenolics. The Biochemistry of Fruits and Their Products*, Vol:1 (Ed: Hulme, A. C.), Academic Pres, London, p 269-304.
- Yavaş, I., & Fidan, Y. (1986). The Value of Grapes in Human Nutrition. The Problems of the Food Industry and the Expected Effect of the Free Zone on the Food Industry Symposium. 15-17 October, Adana, p 225-236.
- Yayla, F. (2008). Investigation of Wine Characteristics of Grape Varieties in the National Collection Vineyard (in Turkish with English abstract, interim report 2006-2008). Tekirdağ Viticulture Research Institute. <u>https://arastirma.tarimorman.gov.tr/bagcilik/Menu/7/Sonuclanan-Projeler</u>. Acess: 15.06.2021
- Yu, D., & Meredith, C. P. (1986). The influence of explant origin on tissue browning and shoot production in shoot tip cultures of grapevine. *Journal of the American Society for Horticultural Science*, *111*(6), 972-975.